On locally finite transitive two - ended digraphs *

نویسنده

  • Norbert Seifter
چکیده

Since decades transitive graphs are a topic of great interest. The study of s-edge transitive (undirected) graphs goes back to Tutte [13], who showed that finite cubic graphs cannot be s-edge transitive for s> 5. Weiss [14] proved several years later that the only finite connected s-edge transitive graphs with s = 8 are the cycles. Considering directed graphs the situation is much more involved. Praeger [9] gave infinite families of finite s-arc transitive digraphs for each positive integer s and each degree. And Mansilla and Serra

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly arc-transitive digraphs - Structure and counterexamples

Two problems of Cameron, Praeger, and Wormald [Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica (1993)] are resolved. First, locally finite highly arc-transitive digraphs with universal reachability relation are presented. Second, constructions of two-ended highly arc-transitive digraphs are provided, where each ‘building block’ is a finite bipartite digrap...

متن کامل

Highly arc-transitive digraphs – counterexamples and structure∗

We resolve two problems of [Cameron, Praeger, and Wormald – Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica 1993]. First, we construct a locally finite highly arc-transitive digraph with universal reachability relation. Second, we provide constructions of 2-ended highly arc transitive digraphs where each ‘building block’ is a finite bipartite graph that is...

متن کامل

Highly arc transitive digraphs: reachability, topological groups

Let D be a locally finite, connected, 1-arc transitive digraph. It is shown that the reachability relation is not universal in D provided that the stabilizer of an edge satisfies certain conditions which seem to be typical for highly arc transitive digraphs. As an implication, the reachability relation cannot be universal in highly arc transitive digraphs with prime inor out-degree. Two differe...

متن کامل

Crown-free highly arc-transitive digraphs

We construct a family of infinite, non-locally finite highly arc-transitive digraphs which do not have universal reachability relation and which omit special digraphs called ‘crowns’. Moreover, there is no homomorphism from any of our digraphs onto Z. The methods are adapted from [5] and [6].

متن کامل

Some sufficient conditions for the existence of kernels in infinite digraphs

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V (D)− N there exists an arc from w to N . If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008